If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+49k=0
a = 1; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·1·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*1}=\frac{-98}{2} =-49 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*1}=\frac{0}{2} =0 $
| .5(3x-9)=x+3 | | (4x-7)=(2x+5) | | 1/2x+5=x+2 | | 3a^=7A= | | 2x(-5/2)=18/4 | | 4(u-9)=7u-33 | | 5b+1=6b-3 | | 2/3b-5=3 | | 5d+9.74=1+3.25d | | 2/3b-6=3 | | 15w^2+9w=0 | | -0.5z^2+(+.5z)^2=0 | | (z^2-(.5z^2))+(.5z)^2=z^2 | | 4x+3x+4=6x-11+5x-7 | | 2x-(5/2)=(18/4) | | 4z÷10+5=2 | | 3/2l=2/3 | | 2x-5/2=18/4 | | 2x-5^2=18^4 | | n^2−10n−84=9 | | 0=49x^2-28x-4 | | n2−10n−84=9 | | x^2+50*x-400=0 | | 0.75s+2.25=s8+0.25 | | 9n-7=79 | | −3+5+6g=11−3g | | x+4=−x−4 | | 2(7x+6)=-44 | | 1/2(x-38)=25+6x | | 1500+50y=0 | | 10x-8=40 | | -4-2x=x-22 |